RT Journal Article
JF IEEE Transactions on Knowledge & Data Engineering
YR 2009
VO 22
SP 479
TI A Nonsupervised Learning Framework of Human Behavior Patterns Based on Sequential Actions
A1 Yong Soo Kim,
A1 Zeungnam Bien,
A1 Sang Wan Lee,
K1 Fuzzy clustering
K1 knowledge acquisition
K1 learning
K1 human behavior.
AB In designing autonomous service systems such as assistive robots for the aged and the disabled, discovery and prediction of human actions are important and often crucial. Patterns of human behavior, however, involve ambiguity, uncertainty, complexity, and inconsistency caused by physical, logical, and emotional factors, and thus their modeling and recognition are known to be difficult. In this paper, a nonsupervised learning framework of human behavior patterns is suggested in consideration of human behavioral characteristics. Our approach consists of two steps. In the first step, a meaningful structure of data is discovered by using Agglomerative Iterative Bayesian Fuzzy Clustering (AIBFC) with a newly proposed cluster validity index. In the second step, the sequence of actions is learned on the basis of the structure discovered in the first step and by utilizing the proposed Fuzzy-state Q--learning (FSQL) process. These two learning steps are incorporated in an amalgamated framework, AIBFC-FSQL, which is capable of learning human behavior patterns in a nonsupervised manner and predicting subsequent human actions. Through a number of simulations with typical benchmark data sets, we show that the proposed learning method outperforms several well-known methods. We further conduct experiments with two challenging real-world databases to demonstrate its usefulness from a practical perspective.
PB IEEE Computer Society, [URL:http://www.computer.org]
SN 1041-4347
LA English
DO 10.1109/TKDE.2009.123
LK http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.123